当前位置 首页> 科易专栏> > 正文

深度相机之双目成像

双目成像
CV研习社    2021-04-23    584

  文章导读

  本文通过介绍双目立体视觉的成像过程,带大家了解双目视觉如何从两个不同视角的成像平面中恢复出物体三维几何信息,重建周围景物的三维形状与位置。

  在说双目视觉之前,我们先聊一下单目成像过程,最简单的单目成像是基于小孔成像的原理,三维空间中的点经过透视投影过程映射到图像平面上,如此一来在透视线上的空间点都落在像平面上的同一点处,所以普遍认为单目相机缺乏深度信息无法测距。(这里仅从成像原理出发,当然现实中借助外界约束有很多单目测距的方法)

  而双目相机利用视差原理从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差来恢复出物体三维几何信息。

  双目的核心在于建立两个图像中特征之间的对应关系,将三维空间中同一目标点在不同视图的成像点关联起来,然后计算它们之间的差别,最后通过视差和距离的几何关系得到深度图。

  双目立体视觉的具体步骤如下:

  对双目相机进行标定得到内外参数和单应性矩阵

  通过内参做畸变校正并用单应矩阵将两张转换到同一平面

  对校正后的两张根据极线约束进行像素配准

  根据配准结构计算每个像素的深度从而获得深度图

  输入左右两个视角的自行车图像:

图片.png

  输出自行车的深度图信息:

图片.png  到底什么是视差、极点、极线、极平面、极线约束等等?

  在谈到双目成像时,首先出现的一个概念就是视差,网上有人用过一个很简单的形式来描述视差,即将人眼想象成双目相机,竖起一根手指放在前方作为目标,分别闭上左眼或右眼去观察目标,我们发现目标在不同成像平面中的位置移动了,这个像素位置的差异值就是视差。

  在上面这张图中,左右两幅图分别表示左右相机的成像平面,假设一个目标在左视图的成像点落在第二列蓝色区域,在右视图的成像点落在第五列蓝色区域,视差值即为3。

  这里小伙伴会问为什么在计算视差值的时候,目标在左右视图中的匹配点所在行相同呢?

  其实在计算视差图之前,存在一个重要的操作即图像校正:包括畸变校正和立体校正两个过程。图像的畸变校正我们都很熟悉了,有兴趣的童鞋可以翻翻小编之前的文章,有一篇线性相机模型中进行了描述。通过张正友标定法计算出相机的4个内参fx,fy,cx,cy和5个畸变系数k1,k2,k3,p1,p2,进一步解决相机的枕形畸变和桶形畸变。

  立体校正的过程是利用两颗相机之间的外参即旋转平移矩阵以及透视投影矩阵,对两幅图像进行极线校正,将图象平面重投影到平行于光心线的公共平面上,如下图所示,将原始的灰色像平面纠正到黄色位置。

  接下来我们从下图解释一下极点、极线、极平面的概念,假设空间一点P投影到左视图像平面上,成像点PL;投影到右视图像平面上,成像点PR。两个相机光心的连线CL-CR与像平面的交点eL和eR称为极点。物点P与左右相机光心CL、CR组成的平面称为极平面。而极平面与相机的像平面交线称为极线。

  上图中还有一个规律,我们发现不同距离处的三维空间点P,P1,P2,P3投影到左视图成像点PL上,在右视图搜索相对应的匹配点时,它们均落在红色直线上(极线)。所以当我们做左右视图的匹配时,是否可以利用这一规律呢?

  在图像匹配的过程中,如何找到两幅图像的对应关系?

  最直接的做法就是逐点匹配,但是从一副图像中逐个像素点的搜索,不仅耗时巨大而且匹配精度不高。为了降低匹配的难度,提供匹配的速度和精度,通常会增加一些约束条件,比如极线约束、相似性约束、左右一致性约束等。其中极线约束最为常见,它是指三维空间中一点P,当投影到左视图P’位置后,必然能在右视图的极线上匹配到该点。该约束将二维空间中的逐点搜索降维到一维直线上的搜索,减少了算法耗时并提高匹配精度。

  我们先来看一种理想的情况,左右相机内参相同且像平面共面,如下图所示:

  在这种情况下,做图像特征匹配时,只需要将左视图中的像素点,沿着水平方向在右视图的极线上搜索对应点即可。

  但是实际情况下左右相机内参不同且像平面不共面,如下图所示:

  上文中提到的立体校正就是应用在此处,为了使同一特征点位于左右相机两张图像水平方向的同一条直线上。也就是把实际情况下非共面行对齐的两幅图像校正成共面行对齐。

  那么极线和视差是否存在某种关系呢?

  假设左右两个相机的焦距相同,极线和光轴均平行。左右视角同时看到两个目标P1和P2,其中XR1和XT1分别是P1点落在左右两幅图中的位置,即P1在左右相机的视差为|XR1-XT1|;XR2和XT2分别是P2点落在左右两幅图中的位置,即P2在左右相机的视差为|XR2-XT2|。所以移动三维空间中的一点P,其在左右相机中的位置也会发生变化,从而视差发生变化。如下图所示:

  根据三角形相似性原理可以得到Z=b * f / d,Z表示目标的距离,b是基线,f是焦距,d是视差,可以看出视差与三维空间上的点到投影中心平面的距离成反比:距离像平面越近的目标,视差越大;距离像平面越远的目标,视差越小。

  双目视觉的本质就是两幅图像特征匹配的过程,虽然技术成熟度很高,但是在哪些情况下仍然存在挑战呢?

  物体边缘处的估计

  纹理信息单调的场景

  缺乏纹理的物体

  光照角度强度不同

  雨雪天气场景下

  夜晚或昏暗场景

  在室内场景会遇到白墙,房顶,玻璃等纹理信息单一或缺乏的情况导致图像匹配失败;在室外场景会遇到进出隧道的光照变化,昏暗街道的匹配失败等问题。

我要收藏
本文为专栏作者授权科易网发表,版权归原作者所有。文章系作者个人观点,不代表科易网立场,转载请联系原作者。如有任何疑问,请联系ky@1633.com。

想体验5个数量级的综合计算效能提升吗?试试这款离散域超多变量复杂最优化求解芯片吧!

相关推荐
基于边缘人工智能技术的智能云联网平台
基于边缘人工智能技术的智能云联网平台是基于5G通信,人工智能,边缘计算等技术,面向智慧城市,工业制造,能源电力等领域构建的高清视频AI应用能力平台,平台支持大容量,高并发,低延时的视频数据的接入,分析,存储、检索和转发,平台采用微服务分布式架构,可以实现应用与算法,软件和硬件双解耦。为行业用户提供融合感知,云边协同,统一管理的全栈式视频智能分析服务,加速行业的数字化转型。
领域:物联网设备、部件及组网技术
自动化解决方案
公司业务涵盖军工领域、汽车制造、工程机械、石油电力、机床管理、压力容器、五金卫浴、轨道交通等行业,为用户提供最佳的自动化解决方案,为用户提供最佳的机床自动生产系统,根据用户产品的工艺特点协助用户选择生产设备,帮助用户规划所需的生产布局及配套的自动化物流,为机床在生产过程中实现自动化上下料、衔接各设备之间的物料自动化周转、装配及定位等作业。实现工厂由自动化-智能化-无人化生产的转变。主要涉及各种数控加工设备、锻压机、冲床、折弯机、浇注机等的自动化智能解决方案。
领域:工业生产过程综合自动化控制系统技术
国际流体动力零部件系统化服务商
公司专注于流体动力零部件研发和装备制造,是集流体力学计算与仿真、流体动力零部件后处理和检测于一体的系统化解决方案服务商和定制化装备制造商。目标产品包括:航发燃油喷嘴、叶冷却流道气膜孔及外表面、冷端转子;航空航天液压动力控制壳体、泵体、阀体和作动器;航空航天发动机复杂油路和冷却流道;核/能源微型反应器、传感器及热交换器;机加件相交孔自动化去毛刺设备等。主营业务围绕技术项目联合攻关和成果布局,包括微细异形大长径比内流道光整加工及深度清洁、流体动力特性测试平台开发、高压液压推力装置定制化开发。
领域:高端装备再制造技术
高智能化双臂机器人
公司致力于研发高智能集群机器人系统,机器人具有 “ 手 、 足 、 眼 、 脑 ” ,基于高速动态移动视觉定位关键技术;机械臂可自主更换电池,视觉精准识别电池的位置,全流程实现无人化智能作业:1.装载外卖;2.更换电池;3.取出外卖。
领域:机器人
建筑及机电声学认知检测及智能声学产品系统研发及产业化
项目利用振动及声学传播的特性,依据专业声学测试分析方法,结合建筑机电、通风设备的特有声音频率,快速准确实现各种设备噪声的检测与分类,实现精准的产品研发配套,有效解决机电设备环境噪声的干扰,实现人居环境尤其是商业酒店、综合体及公共场所的声品质提升,给城市、商业建筑、酒店及公共场所的通风、制冷系统装上一套“无声的装备”。 项目优势: 1、市场前景广:振动声学市场巨大,重点文旅产业的基础设施-声学产品(防火隔声门、通风隔声消声百叶窗、浮筑地台等)及技术配套; 2、技术水平领先:引进国外IAC先进技术并消化吸收,国际品牌、外资企业资深技术团队及管理团队,技术及产品体系、资源体系完善; 3、行业布局深入:已经建立起与上游客户稳定的业务关系,与科研院所进行产研学一体化合作,与行业内北京、上海、深圳资深外资机电及声学顾问、设计院已经建立起稳定的业务对接,合作共赢; 4、团队项目业绩突出:参与一些国家重大项目建设,团队经验非常丰富。
领域:网络应用技术
领先的数据安全分析专家
公司是由密码技术专家,国内信息安全领域专家和管理人员组成核心团队的高新技术企业。公司专注密码安全(分析)技术研究和产品开发,深入研究行业应用,探索创新产品研发,解决行业安全难题,提升数据安全能力,拥有多项发明专利。商用密码检测产品填补国内空白,国内密码应用安全检测产品市场占有率90%以上。公司是国内最早利用密码分析技术进行加密数据流量分析技术的企业,产品已经在政府、运营商等网络出口部署,凭借独特的分析技术,为用户数据安全提供了有力支撑。
领域:计算机产品及其网络应用技术
光生物法制氢是什么?
光生物法制氢是什么?
光生物法制氢是一种利用绿色植物或微生物的光合作用将光能转化为氢气的技术。其基本原理在于通过植物或微生物的光合系统,将二氧化碳和水转化为有机物,并进一步将这些有机物作为能量来源,通过代谢活动产生氢气。
关键词:电解,清洁能源,热解,碳基,光生物法制氢
施工新方法技术发展前景?
施工新方法技术发展前景?
施工新方法是指在工程建设过程中,为了提高施工质量和效率,采用的新型或改进的施工技术和方法。这些方法往往结合了先进的科学技术元素,改善了传统技术存在的不足,提高了新型施工技术的科技含量。例如,3D打印技术已经应用于建筑领域,成功打印出多层建筑物的模型,并将其应用于实际施工中,取得了良好的效果。此外,无人机技术也在建筑施工中发挥了重要作用,可以实时监测工地的进展情况,了解施工质量,及时发现和解决问题。建筑信息模型(BIM)也是一种重要的施工新方法,可以在整个建筑项目的生命周期中使用,为施工提供更加准确的数据支持。
关键词:进行实例分析,分析再生,再生施工,实例分析,施工新方法
本体之空研发方向
本体之空研发方向
本体之空主要指的是本体既是实有者又是空相的特性。说它是实有者,是因为它真实存在,毫无虚假;说它是空相,则是基于两点:一是无相,即看不见、摸不着;二是空寂,意味着一法不立,不包含任何东西在内。这种空与自性空有所不同,本体空是无为空,它强调的是如来法身和众生佛性原本就有,永恒存在。而自性空则是有为空,是由因缘和合而存在,亦由因缘离散而消失。本体之空的主要特性在经文中也有所体现,例如“是故,空中无色”,这里的“空”指的就是本体空,说明本体是清静空寂的,其中并无实体或物质存在。
关键词:界定,如来,空印,唯识,本体之空
水电产业产业研究动态
水电产业产业研究动态
水电产业,即水力发电产业,是指通过利用水流的动能转化为电能的一种可再生能源发电方式。水电发电原理主要是利用水位差和水流速度产生的动能,通过水轮发电机组转化为电能。水电产业作为可再生能源领域的重要组成部分,对于推动全球能源转型和应对气候变化具有重要意义。
关键词:火电,产业发展,涵义,能源产业,水电产业
现代工业新城产学研合作资源
现代工业新城产学研合作资源
现代工业新城是一种集科研、生产、商务、居住、休闲于一体的现代化工业城区,以发展低碳经济为前提,以现代高技术装备工业为主要功能。这类新城主要承接现代装备产业、新能源、科技研发项目落户,以及城市内工业企业的外迁。它们通常遵循规划高标准、运作大手笔、建设高速度、服务高效率的原则,并努力吸引投资,聚集各种生产要素,促进产业的发展和升级。
关键词:现代工业,利用海西,经济发展,抚州市经济发展,现代工业新城
产量及其构成因素的用途
产量及其构成因素的用途
产量是指人或机器在一定时间内生产出来的产品的数量,其构成因素会因不同行业和产品类型而有所差异。在制造业中,产量的计算通常是通过生产线上的总产品数减去低质量产品数量来得出。而在农业领域,产量的计算则涉及到农作物亩产量、水产品产量以及牧场每亩畜产品产量等。农作物的亩产量是由农作物总产量除以农作物播种面积(或收获面积)得出的,而水产品产量则是通过水产品养殖产量除以养殖面积来计算的。
关键词:最迟,结果表明,机插稻,同播,产量及其构成因素
局域屏蔽是什么?
局域屏蔽是什么?
局域屏蔽是一种用于防止电磁干扰和电磁辐射的技术手段。它通过在特定区域内实施屏蔽措施,以限制电磁波的传播和干扰。这种技术常用于综合布线网络,特别是在大楼外部存在雷达、无线电发射设备、移动电话基站、高压电线、电气化铁路、雷击区等干扰源的情况下。
关键词:防护装置,屏蔽,实时监测技术,定向,局域屏蔽
强制性治理研发方向
强制性治理研发方向
强制性治理方式在邻避冲突治理过程中具有“事后性”特征,即在事件发生后政府采取的一种力求快速平息事件的果断措施。这种治理方式容易加剧事件参与者的逆反心理,激起更强烈的反抗。在强制和威慑下,参与者不得不服从和妥协,但这种服从和妥协是表面的、暂时的,虽起到了“灭火”作用,但还可能随时“死灰复燃”。
关键词:自主性,自主性治理,作用机理,理论研究,治理自主性,强制性治理
服务精选
服务案例
官方社群
标签