当前位置 首页> 科易专栏> > 正文

深度相机之TOF成像

相机技术 成像技术
CV研习社    2021-05-08    743

文章导读


本文通过介绍TOF相机的成像过程,带大家了解TOF相机中脉冲法和连续波调制这两种技术原理,并详细的分析每种方法的实现细节和各自优缺点,对连续波调制方法深入其相位差原理,单频相位测距的限制及如何解决模糊距离等问题。


0

前情回顾

小编过了一个咸鱼般的五一,躺尸在家被五大过程组,十大知识体系折磨个半死,做题全凭感觉。


记得放假前一天和朋友吃饭,被问到TOF的原理是什么?小编弱弱的回答发射脉冲波打到物体返回后统计光的运行时间从而计算距离。被大佬用质疑的眼神瞄了一下,然后啪嗒啪嗒给我解释了一番连续调制波的原理。


小编总感觉哪里有些问题,做了这么久激光雷达感知算法,那些Velodyne-16,Horizon确实是基于脉冲波的技术原理呀,不过再往下问具体传感器内部是怎么工作的,小编也是一知半解。


下面我们来好好补一补有关TOF相机的基本知识,剧透一下原来TOF相机既可以基于脉冲波的光学快门方法又可以基于连续调制波的方法。


1

什么是TOF相机

在双目成像的文章中,我们说过双目相机是一种被动接收自然光的传感器,通过接收自然光利用三角测距的方式描述三维环境。本文的TOF相机则是一种主动发射红外光的传感器,通过发射光脉冲并接收打到物体反射回来的脉冲信号,最后计算光脉冲的飞行时间得到目标物体的距离。


说到这里我们可能第一反应是这不就是激光雷达的工作原理嘛!确实很相似,但是机械式或混合固态激光雷达采用逐点扫描的方式感知环境信息,而TOF相机以面阵的方式得到深度图。


小编最早接触的TOF相机就是微软的Kinect 2.0。Kinect系列很有意思,第一代基于结构光原理做的深度相机,第二代基于TOF原理做的深度相机,当时小编以为第三代是不是要用双目原理做深度相机了,誓把深度成像的技术都玩个遍的时候它停产了。如下图所示:上面是Kinect 1.0,下面是Kinect 2.0(长得太丑)

图片.png


TOF相机输出的深度图在2D空间表示为灰度图像,每个像素点对应一个距离值,其中强度越亮表示距离越近,如果光源被吸收或者未收到反射信号则呈现黑色。如下图所示:

图片.png


在深度图的基础上,配合相机的外参数据可以转换三维点云。假如你又同时有一颗RGB相机,能够将物体表面纹理映射到点云体素上,那么一张栩栩如生的三维渲染模型就出来了,如下如所示:

图片.png


2

TOF相机的技术原理

发射模块和接收模块是TOF相机的核心部分,通过内部的数据处理计算出深度信息。至于采用什么技术计算深度信息,我们提到了两种方法:


基于脉冲法原理简单:类似于我们有一个计时器,按下开始键发射一束脉冲波出去,当遇到障碍物后返回,当被接收器收到后按下停止键。根据计时器记录的时间和光的速度可以计算出相机到物体的距离。


公式如:Distance = 1/2 × c × Δt

其中c表示光在空气中传播的速度,Δt表示脉冲信号从相机到目标往返的时间。

图片.png

通过一个高频率的时钟驱动计数器对收发脉冲之间的时间进行计数,使得计数时钟的周期必须远小于发送脉冲和接收脉冲之间的时间才能够保证足够的精度。但是如果要达到毫米级别的测量,对控制时钟,发射单元等电子元器件的精度都是一项挑战。这就是为什么无人驾驶中应用的激光雷达传感器常基于脉冲法,因为该方法比较适合中远距离的测量。


但是在机器人等应用中使用的TOF相机大多采用的是连续波调制的方法:使用调制光照射场景, 并测量通过场景中的物体反射后返回光的相位延迟。得到相位延迟后, 再使用正交采样技术测量间接得到距离。


公式如:Distance = 1/2 × c × ϕ × T/2π

其中c表示光在空气中传播的速度,T表示调制周期,ϕ表示发射和接收波形的相位差。

图片.png

该方法比较适合中短距离的测量,精度往往可以达到毫米级。


通过对比上述两种方法的基本原理,我们不难发现:

脉冲法测量方式简单,占空比窄检测距离远;但是它易受环境光和元器件精度影响,测量精度相对较低。

相位差可以消除测量器件带来的固定偏差但是采样次数多,导致测量耗时帧率低。


3

如何将相位偏移转换成距离?

仔细看两种方法的距离求解公式,其实很相似,最终都是距离 = 速度 × 时间。唯一区别在于时间是怎么得到的?

脉冲法求时间比较直接,这里没有什么好解释的,就是到达时间-发射时间即可。

相位差也是可以转换成时间的,通常某一定频率 f 的相位差时间 = 相位差的度数 / 2πf 。这里就有小伙伴会问相位差的度数是怎么求的?


在连续波调制过程中通常将连续波近似为正弦波划分成4个窗口进行采样,并且采样时间间隔相同。如下图所示:

图片.png

推导过程就不贴了,最终的结果为:

ϕ = arctan((Q3-Q4) / (Q1-Q2))


相位差求取中的(Q3-Q4)和(Q1-Q2)相对于脉冲调试法消除了由于测量器件或者环境光引起的固定偏差。并且方程中求商的过程减少了来自距离测量的恒定增益影响,比如系统放大和衰减或者反射响度等问题。


4

重复周期下的相移如何计算距离?

在信号与系统中提到过相位与延时的关系,其中2π为一个符号周期时间,如果采用相位差法测距,怎么判断目标位于第几个周期呢?

事实上采用单一频率进行相位测距,确实无法分辨超过一个周期的距离值。简单粗暴一点的做法就是根据最大测量距离来调节频率,不过频率越高意味着距离分辨率越低,从而测量精度越低。所以在单一频率下会出现距离和精度无法同时满足的情况。


为解决单频造成的模糊距离问题,可以采用多频率技术来延长测量距离同时不降低调制频率。多频率技术的工作原理就是将一个或多个调制频率添加到混合。每个调制频率将有不同的模糊距离,但真正的位置是在不同的频率一致。当两个调制一致的频率,称为拍频,通常是较低的,并对应一个更长的模糊距离。如下图所示:

图片.png

此解释来源于2014年的一篇文章:Time-of-Flight Camera – An Introduction

有兴趣的小伙伴可以私我要文章(还有一篇更详细的原理解释:TOF Camera Principles Methods and Applications)


5

TOF相机的特性对比

市场上比较常见的视觉传感器包括单目相机、双目相机、结构光相机、全景相机、红外相机、TOF相机等。通常在谈到深度相机时会把TOF和结构光、双目这三种技术拿出来进行对比。


TOF技术相比结构光实现难度较低,发射信号遇到目标返回即可,不像结构光需要先打出激光散斑编码,然后再去提取编码特征。而且TOF受环境影响较小,不存在结构光激光散斑在户外会被淹没的问题,具有较好的抗干扰能力。但是TOF相机的分辨率低,所以通常只适用于一些近距离的避障导航功能。


TOF技术相比双目成像技术,因为其主动发射光源,输出的深度数据是通过解相位计算得到,所以很大程度上不受阴影的影响,在昏暗场景依然有良好的效果。而且TOF生成深度图没有复杂的特征配准、三角测量等算法加持,所以不依赖特征匹配的好坏,也就不受物体表面纹理,环境光照射角度等影响。在生成深度图的实时性上自然优于双目经过一大堆复杂计算的成像过程

本文来自微信公众号【Carbontech】,未经许可谢绝二次转载至其他网站,如需转载请联系微信13372349346

我要收藏
本文为专栏作者授权科易网发表,版权归原作者所有。文章系作者个人观点,不代表科易网立场,转载请联系原作者。如有任何疑问,请联系ky@1633.com。

双选云对接

相关推荐
电子内窥镜解决方案
公司电子内窥镜解决方案,针对临床痛点的解决方案,包括以下产品: 1、呼吸麻醉:可视喉镜系列产品,应对新冠疫情的可视化气道管理解决方案; 2、泌尿外科:硬质电子经皮肾镜;MPCNL术式,新型李逊镜肾结石清除解决方案; 3、肝胆外科:硬质电子胆道镜;PTCSL术式,新型电子硬镜(王平镜)肝内胆管结石及微创保胆解决方案。
领域:医学影像诊断技术
轻量化“数字孪生”3D引擎推动企业数字化转型发展
公司在 “数字孪生”核心支撑技术—3D轻量化领域已耕耘多年,形成了极具门槛的核心技术积累。截止目前,已为国内超过400家客户,涵盖制造业、工程建筑行业、高等院校,提供了3D轻量化产品及技术服务,应用于近500多个重大项目或系统平台建设。 主要产品与服务有: (1) 3D/BIM/GIS轻量化融合引擎(WebGL/服务器端渲染); (2) BIM/GIS施工管理平台; (3) CAD图纸轻量化引擎(WebGL); (4) 图模管理协同平台; (5) 汇报演示系统; (6) 图模查看工具; (7) 3D可视化沙盘搭建系统; (8) 搭建智慧工厂、化工、矿山、电力领域的3D设备模型交易平台。
领域:Web服务与集成软件
药物缓释鼻腔通气及术后支撑系统
国内首家专注鼻科医疗器械研发、生产和销售的科技公司,聚焦鼻腔领域的刚需,为更高效、舒适、安全、经济的临床解决方案提供支持。 核心产品是鼻腔支架,其有效性、舒适性、安全性 均远高于被替代器材。国内尚无厂家报批,门槛高,公司有更长的高利润窗口期。 智能镍钛记忆合金制成的中空填充鼻腔支架产品,即鼻腔微创支架,前鼻孔支架,后鼻孔支架。该系列支架在临床手术后可被安置到鼻腔,并牢固地附着在鼻腔所需位置,从而起到压迫、重塑、止血的作用,并保证顺畅通气,而目前临床常用的膨胀海绵之类的填充物会堵住鼻腔,鼻腔支架产品在有效鼻腔填塞压迫塑形的同时,可以在鼻腔中形成通气通道,不影响患者的通气。鼻腔支架是医疗耗材和治疗策略的改进,有并发症无法做鼻腔手术的病人,用一种新型的诊疗方式,替代手术方案。
领域:其他
植物精油芯片缓释技术在驱蚊手环中的应用与产业化
基于药用植物精油作为天然驱蚊剂的应用前景和存在的弊端分析,项目通过研究植物精油芯片缓释技术在驱蚊手环中的应用,从精油复配、浓度配比、包裹技术等方面进行研究测试,致力于生产自带舒适圈的植物精油驱蚊手环,实现长效保护、天然安全等功能,适用于不同场景不同人群。该技术充分利用药用植物精油的良好的环境相容性、怡人的香味、对人及哺乳动物无毒、无残留等优势,对日后研发出更多更稳定、高效、实用的驱蚊产品奠定了良好的基础。公司专业从事母婴驱蚊产品的研发和制造、分销和零售,具有全球视野,产品范围涵盖运用高分子缓释技术的纯植物驱蚊产品,及蚊虫叮后护理、灭蚊器等一系列产品。
领域:天然药物生物合成制备技术
激光质子刀关键技术突破及激光器产业化
质子疗法是肿瘤放射治疗的一种,该疗法将氢原子核中的质子通过粒子加速器释放高能量射线进行治疗。 由于质子束在组织中独特的吸收曲线(称为布拉格峰),它可以提供更好的剂量分布,允许在肿瘤部位沉积最大的破坏性能量,同时最大限度地减少沿路径对健康组织的损害。 全球首创激光驱动的离子加速:相比于目前质子疗法使用的传统加速器,激光驱动的离子束加速梯度高,能在很短的距离加速到很高的能量,具有源尺寸小、脉冲短、亮度高和能谱宽等特点,在等离子体电磁场诊断、核聚变质子快点火、质子照相、癌症治疗和温稠密物质产生等方面有着广阔的应用前景。 全国产化,全球顶尖的下一代小型化激光质子刀,既完成了对传统放疗的替代,又实现了对大型加速设备的源头创新,引发成本革命,是解决商业化痛点的终局方案。
领域:新型治疗、急救与康复技术
智慧林长制全面解决方案
林长制是以保护发展森林等生态资源为目标, 以压实地方党委政府领导干部责任为核心, 以制度体系建设为保障, 以监督考核为手段, 构建由地方党委政府主要领导担任总林长, 省、市、县、乡、村分级设立林(草)长, 聚焦森林草原资源保护发展重点难点工作, 实现党委领导、党政同责、属地负责、部门协同、全域覆盖、源头治理的长效责任体系。 公司的核心技术团队均有十余年从事“智慧城市”领域的经验,具备新型智慧林业顶层设计、全面解决方案、项目研发及实施的全过程管理能力;主导和参与的项目累计金额达数亿元。 公司具备测绘高级工程师、信息化中高级工程师、系统集成等中高级工程师数十人;具有地方标准和行业标准制定能力和丰富的经验;核心成员曾主导及参与出版发行行业信息化专著。 公司主营业务是智慧/数字林业,围绕林业系统的相关业务,是林业行业领域,提供智慧林长制全面解决方案的服务商。
领域:物联网应用软件
自拟中药汤是什么?
自拟中药汤是什么?
探讨自拟中药汤配合熏蒸推拿法治疗类风湿关节炎的临床效果。方法将52例类风湿关节炎患者分为观察组和治疗组各26例,实施自拟中药汤配合熏蒸推拿法治疗,对照组患者采用常规治疗,并比较两组患者的治疗效果。
关键词:临床效果,中药汤,类风湿关节炎,推拿法
波导耦合器专利申请
波导耦合器专利申请
波导耦合器是一种常用的微波器件,用于在不同波导系统之间传输微波信号。其工作原理基于电磁波在波导内的传输特性,通过特定的结构设计,实现不同波导之间的能量耦合和传输。波导耦合器的基本结构包括输入波导口、输出波导口和耦合部件。
关键词:平面弯曲,波导器件,波导耦合器
自动投切专利申请
自动投切专利申请
自动投切是通过自动装置来实现的。这种装置能够根据电网的运行状态,通过感应器对电容器的运行进行自动调控,并在需要时自动进行投切。自动投切装置在电力系统中有着广泛的应用,包括重要机房、计算机房等关键设备的电力保障,电力系统中重要设备、通信设备的备用电源,以及火灾、地震等紧急情况下的电力供应保障。
关键词:自动投切,实现方式,并联电容器
口令码变换算法的用途
口令码变换算法的用途
口令码变换算法通常涉及一系列的操作,用于将原始口令转换为另一种形式,以增强安全性或满足特定的应用需求。
关键词:保密,加解密,大型企业,财会
半刚性基层底拉应力研发方向
半刚性基层底拉应力研发方向
半刚性基层底拉应力是指半刚性路面基层底面在行车荷载作用下产生的拉应力。在路面结构中,半刚性基层起到提高整体承载能力并降低土基承受的荷载强度的作用。然而,半刚性基层本身的拉应力相对集中,若超过极限则可能导致路面结构损坏。
关键词:正交试验,底基层,半刚性基层,设计参数,拉应力,半刚性基层底拉应力
空压机组技术哪里有?
空压机组技术哪里有?
空压机组是一种将机械能转换成气体压力能的能源转换装备,主要由泵头组件、气罐组件和管阀组件等部分组成。泵头组件是空压机的核心部件,主要负责压缩空气,完成能量的转换;气罐组件是空压机的存储部件,负责储存压缩后的气体;管阀组件是空压机的输控部件,负责连接泵头和气罐输送气体,并控制气体流通。
关键词:城际动车组,实际应用,空压机组
直接横摆力矩控制技术哪里有?
直接横摆力矩控制技术哪里有?
直接横摆力矩控制(DYC)是一种车辆运动稳定的有效方法,它通过对车轮上纵向力的调节,直接构成对车辆质心的横摆力矩,以克服车辆的前轴或后轴侧滑,提高车辆的操纵稳定性。在车辆处于低附着系数路面、大侧向加速度等极限工况下行驶时,车轮上的侧偏力已处于饱和状态,此时无法单纯依靠转向控制来提高车辆的稳定性。然而,车轮上的纵向力往往还有很大的裕度可以被利用,DYC正是基于这一原理来提高车辆的操纵稳定性。
关键词:电机驱动,分布式驱动,横摆力矩,直接横摆力矩控制
碳酸盐含量的用途
碳酸盐含量的用途
碳酸盐含量主要指的是血液中的二氧化碳含量,这是人体新陈代谢产生的废气。通过测量呼气中的二氧化碳含量,可以确定碳酸盐含量,并用于计算氧合指数。在建筑材料、食品工业、医药和环保领域,碳酸盐都有着广泛的应用。
关键词:储层,岩心,体积分数,测井资料,塔拉,碳酸盐含量
服务精选
服务案例
官方社群
标签