当前位置 首页> 科易专栏> > 正文

深度学习之Focus层

Focus层技术 计算机技术
CV研习社    2021-04-13    828

文章导读


本文的知识点来源于用YOLOv5做一些道路目标检测时,看到一个名曰Focus的层,发现是一种下采样的方法。所以在此科普一下深度学习中有哪些下采样以及各自优缺点。


小编近期备考PMP,所以分享频率减缓,各位小伙伴见谅~~~不过发现已经把写公号做知识分享作为一种习惯,哈哈,希望能长期坚持下去。


1

深度学习有哪些下采样的方式?

YOLOv5中提到了一种Focus层,高大上的名称背后感觉就是特殊的下采样而已。不过原理逻辑虽然简单,但也体现了作者的创造力,不然小编咋就没想到呢~~~


提到下采样,在这里小编列举一下深度学习中都接触过哪些下采样方式:

最早接触到的应该是池化操作,如下图所示:

图片.png

包括平均池化和最大池化两种,平均池化有种平滑滤波的味道,通过求取滑窗内的元素平均值作为当前特征点,根据滑窗的尺寸控制下采样的力度,尺寸越大采样率越高,但是边缘信息损失越大。最大池化类似锐化滤波,突出滑窗内的细节点。但是不论哪种池化操作,都是以牺牲部分信息为代价,换取数据量的减少。


步长大于1的卷积也可以实现池化功能,如下图所示:

图片.png

卷积操作可以获得图像像素之间的特征相关性,采用步长大于1的跳跃可以实现数据降维,但是跳跃采样造成的相邻像素点特征丢失是否会影响最终效果。


池化作为一种强先验操作人为设定了降采样规则,而卷积层是通过参数自己学习出降采样算子,具体对比可以参考这篇文章:Striving for simplicity: The All Convolutional Net.


2

下采样在神经网络中的作用?

下采样在神经网络中主要是为了减少参数量达到降维的作用,同时还能增加局部感受野。


但是下采样的过程不可避免的伴随信息丢失,尤其是在分割任务要经历下采样编码和上采样解码的过程,那么如何在不损失数据信息的情况下,增大深层特征图的感受野呢?


18年的时候出了个空洞卷积的玩意,如下图所示,根据打洞的间距把卷积核进行膨胀,在没有增加参数量的情况下,增大了感受野,从某种角度来看也算是一种局部下采样的过程。

图片.png

图a,b,c均是3×3尺寸卷积核,图(a)的空洞为0,每个核算子之间紧挨着没有间隔,等价于普通的卷积,每次运算学习9个参数,感受野即3×3;图(b)的空洞为1,同样学习9个参数,但是每个算子之间空一格,感受野即7×7;图(c)的空洞为3,仍然学习9个参数,但是每个算子之间空三格,感受野即15×15。


如何计算空洞卷积的感受野呢?

这里给出一个常规的计算公式:

size=(dilate_rate-1)  ×(kernel_size-1)+  kernel_size


3

YOLOv2之PassThrough层

上面我们聊了一些下采样的方法和优缺点,但是在目标检测网络中还有两种特殊的下采样,PassThrough首次出现在YOLOv2网络,将相邻的特征堆积在不同的通道中,目的是将大尺度特征图下采样后与小尺度特征图进行融合,从而增加小目标检测的精确度。如下图所示:

图片.png

小编对这张图和Focus的图对比了半天,简直一模一样,暂时没发现这两个层有何区别?通过Tensorflow提供的API接口tf.space_to_depth测试了下Tensor的输出,确实是隔行采样再拼接的形式。有小伙伴知道差异的欢迎+v指导。


4

YOLOv5之Focus层

Focus层非常类似PassThrough层,同样是采用切片操作把高分辨率的图片/特征图拆分成多个低分辨率的图片/特征图,如下图所示:隔行采样+拼接

图片.png

将4×4×3的Tensor通过间隔采样拆分成4份,在通道维度上进行拼接生成2×2×12的Tensor。Focus层将w-h平面上的信息转换到通道维度,通过卷积的方式提取不同特征。采用这种方式可以减少下采样带来的信息损失。


小编觉得从细节的角度此方式确实比stride为2的卷积或者池化要精致,用在PC端建模可能有一些精度提升。但是如果用在工程上,考虑到大多数芯片厂商未必提供Focus层或者自定义接口,从部署的角度可以牺牲Focus带来的0.1%的提升更换成Conv或Pool层。


本文来自微信公众号【CV研习社】,未经许可谢绝二次转载至其他网站,如需转载请联系微信chenwei000429 




我要收藏
本文为专栏作者授权科易网发表,版权归原作者所有。文章系作者个人观点,不代表科易网立场,转载请联系原作者。如有任何疑问,请联系ky@1633.com。

想体验5个数量级的综合计算效能提升吗?试试这款离散域超多变量复杂最优化求解芯片吧!

相关推荐
“城市温度”-路口自适应交通信号灯
本产品是一个新型的智能交通信号灯。主要用于城市单路口或者封闭园区等场景下的智慧通行。其主要针对城市交通中的人车协同效率提升,以及城市交通中“老弱病残孕”等弱势群体的路口出行问题,通过人工智能、图像识别、智能控制等技术,为城市的边缘交通路口,打造一个充满科技和人文关怀的城市路口通行方式,是传统“按钮式”行人交通灯的科技升级。
领域:交通控制与管理技术
大幅提高油田采收率的超短半径水平井项目
超短半径双水平U型地热井技术,是通过超短半径水平井精准的随钻测量及轨迹控制能力,将相距数百米以上的两口或多口直井,在油层内精准对接,将原有的直井变为U型水平井,从一口井注入冷水,另一口井采出热水,只取热不取水,使地热能得到高效利用。 这项技术可使油田大量关停井所蕴含的地热资源得到高效利用,节约大量燃煤,节能减排,助力双碳目标的实现。
领域:资源勘查开采技术
国内领先的高端精密半导体清洗设备
公司研发了晶圆清洗机、光刻胶清洗机、钢网清洗机、治具/剧刀清洗机、在线/离线PCBA清洗机、吸嘴清洗机、在线BGA/CSP芯片清洗机、在线毛刷清洗机、PCB清洁机、硅料硅棒清洗机等多款产品,是主要从事半导体、光伏及新能源汽车等行业的高端智能制造高精密清洗设备技术开发、生产、销售为一体的高科技企业。经过十几年拓展,公司产品涵盖了整个半导体电子行业,国内外市场和服务网络进一步完善。拥有多项5G/新能源/半导体应用领域核心技术专利、高新技术企业\ 专精特新,公司职员65人,核心技术团队15人,其中博士/硕士2人,坚持以共享高效、精准、节能的科技产业技术经验,成就高附加价值的服务,以及创造客户利润为使命,引进先进且高质量的关键组件,导入工业4.0智能制造的技术观念,不断为追求高品质的工业智能制造设备而努力。
领域:机器人
新生态环保技术及新材料产业
公司是澳大利亚合资企业,是澳大利亚科学家及团队创立,拥有自主知识产权,国际发明专利,在美国,欧盟,中国,韩国,日本均注册专利并获得专利证书,为全球唯一一项将软木改性为硬木的高科技项目。2010 年进入中国,分别在扬州和山东设立工厂。 利用世界上富足的种植园软木或竹子及其他循环再生材料,获得无限供给的完美的高品质硬木,重组竹或其他新科技材料。是致力于环保事业的墨尔本大学科学家及团队 25 年潜心研究成果。 项目符合国家产业政策和城市发展规划,项目产品属于《产业结构调整指导目录》中农林业第 53 项:木质复合材料、竹质工程材料生产及综合利用。 市场情况和市场前景规划 :产品生产流程没有废气废水的排放,完全达到环保要求。产品经过 SGS 全方位检测,不含甲醛及任何有色金属,有机挥发物和多环芳烃测试均为 A+ 级,即欧盟儿童玩具级。森林环保 FSC100%证书。防白蚁和真菌的最高级别,密度可控(500-1400kg/m3),物理性能极限提高,水份永久在 5%之下,极其稳定。与千年生长的热带雨林中最昂贵的天然硬木相比,更具有稳定性、耐用性和高硬度的实木材料。同时克服了木材的弱性,使之阻燃防水及紫外线,成为室外建材及家具的首选材料,免维护。适用于乐器,家具、户外建筑材料,地热地板、室内外门窗、游艇船舶,汽车内饰,家装材料,工艺品等等。性和高硬度的实木材料。同时克服了木材的弱性,使之阻燃防水及紫外线,成为室外建材及家具的首选材料,免维护。适用于乐器,家具、户外建筑材料,地热地板、室内外门窗、游艇船舶,汽车内饰,家装材料,工艺品等等。
领域:环保及环境友好型材料技术
电子内窥镜解决方案
公司电子内窥镜解决方案,针对临床痛点的解决方案,包括以下产品: 1、呼吸麻醉:可视喉镜系列产品,应对新冠疫情的可视化气道管理解决方案; 2、泌尿外科:硬质电子经皮肾镜;MPCNL术式,新型李逊镜肾结石清除解决方案; 3、肝胆外科:硬质电子胆道镜;PTCSL术式,新型电子硬镜(王平镜)肝内胆管结石及微创保胆解决方案。
领域:医学影像诊断技术
轻量化“数字孪生”3D引擎推动企业数字化转型发展
公司在 “数字孪生”核心支撑技术—3D轻量化领域已耕耘多年,形成了极具门槛的核心技术积累。截止目前,已为国内超过400家客户,涵盖制造业、工程建筑行业、高等院校,提供了3D轻量化产品及技术服务,应用于近500多个重大项目或系统平台建设。 主要产品与服务有: (1) 3D/BIM/GIS轻量化融合引擎(WebGL/服务器端渲染); (2) BIM/GIS施工管理平台; (3) CAD图纸轻量化引擎(WebGL); (4) 图模管理协同平台; (5) 汇报演示系统; (6) 图模查看工具; (7) 3D可视化沙盘搭建系统; (8) 搭建智慧工厂、化工、矿山、电力领域的3D设备模型交易平台。
领域:Web服务与集成软件
定向离子刻蚀专利申请
定向离子刻蚀专利申请
新一代硅微通道板的主要性能。采用定向离子深度刻蚀技术在2和4硅片上刻蚀了四组不同直径的硅微通道板微孔阵列,分别采用PECVD技术和液体化学沉积两种方法制作了硅微通道板的连续打拿极,从而探索了研制新一代硅微通道板的途径。
关键词:刻蚀技术,微通道板,不同直径,微孔阵列
圆柱薄壳技术专家推荐
圆柱薄壳技术专家推荐
超空泡运动体的动力屈曲失稳具有隐蔽性、突发性和危险性,因而必须研究清楚运动体的失稳区域边界及失稳振幅.将超空泡运动体模拟成受轴向周期载荷作用的细长圆柱薄壳,给出非线性几何方程、物理方程和平衡方程,建立细长圆柱薄壳带有非线性项的动力屈曲微分方程组;
关键词:细长,超空泡,薄壳
观测系统参数技术发展前景?
观测系统参数技术发展前景?
观测系统参数是指用于描述观测系统性能和功能的各种技术指标。这些参数可以根据不同的观测领域和使用的设备而有所不同。在观测领域,常见的参数包括分辨率和信噪比。分辨率指的是观测系统能够分辨出的最小角度或距离,特别是在天文学中,它常用于衡量望远镜或射电望远镜的分辨率能力。信噪比则是信号与噪声的比值,用于衡量观测数据的质量。高信噪比意味着观测系统能有效地从噪声中分离出有用的信号。
关键词:观测系统,三维观测系统
Au薄膜的用途
Au薄膜的用途
Au薄膜,即金薄膜,作为一种具有良好导电性和化学稳定性的材料,在各个领域有着广泛的应用。Au薄膜的性能主要受制于其厚度和形貌。在介质衬底上,薄膜通常呈三维岛状生长模式,存在一个临界厚度,大约为10~15nm。当薄膜的厚度小于这个临界厚度时,薄膜的表面呈不连续岛状结构,电学性能不佳。然而,随着厚度的增加,金属岛相互连接形成连续的薄膜,这往往会伴随着显著增强的光吸收、反射及散射。因此,要获得理想的透明导电金属薄膜,关键在于减小金属薄膜的临界厚度。
关键词:Au,逾渗,原位测量,网状
工程计算技术专利买卖交易
工程计算技术专利买卖交易
工程计算是工程项目中不可或缺的一个环节,它涉及对工程项目的各项数据进行计算和分析,包括但不限于工程量、材料用量、人工用量和机械用量等。根据不同的计算目的和要求,工程计算可以细分为预算计算、结算计算和决算计算等多种类型。这些计算不仅为项目决策和设计提供了基础,还是施工和管理的重要依据。
关键词:领域应用,国家安全,显著提升,计算能力
混凝土科学研发方向
混凝土科学研发方向
端电池是电池的一种特殊类型,主要用于在特定情况下为电子设备供电。它通常被配置为两组,一组作为基本电池,供正常负荷时使用,而另一组则作为端电池,专用于在事故时调节直流母线电压。当基本电池使用过多,导致直流母线电压下降过多时,端电池会通过调节装置投入工作,以维持直流母线的电压水平。
关键词:科研机构,计量认证,国家科技,混凝土技术
养分胁迫技术发展前景?
养分胁迫技术发展前景?
以杂交早稻威优916为试验材料,采用水培方式栽培,生育后期设置养分胁迫和全营养液两种处理,从蛋白质组学角度研究后期持续的养分胁迫对水稻籽粒灌浆的影响,以期为水稻高产栽培提供科学依据。籽粒蛋白质经双向电泳分离后共获得了37个发生差异表达的蛋白质,经串联质谱分析(ESI-Q MS/MS),27个蛋白质功能得到鉴定,包括4个参与光合作用的蛋白质、13个与籽粒充实发育相关的蛋白质、9个逆境相关的蛋白质及1个呼吸代谢相关的蛋白质。
关键词:杂交早稻,灌浆,水稻籽粒,水稻高产
端电池科研进展
端电池科研进展
端电池是电池的一种特殊类型,主要用于在特定情况下为电子设备供电。它通常被配置为两组,一组作为基本电池,供正常负荷时使用,而另一组则作为端电池,专用于在事故时调节直流母线电压。当基本电池使用过多,导致直流母线电压下降过多时,端电池会通过调节装置投入工作,以维持直流母线的电压水平。
关键词:电子器件,新型电力,开关型取代,新型电力电子器件
服务精选
服务案例
官方社群
标签